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Abstract. The solvation of infinitely dilute CsBr in high-temperature aqueous solutions is
analysed by integral equation calculations, according to the recently proposed molecular-based
formalism which connects the solvent environment around individual ionic species and their
macroscopic solvation behaviour. Recent experimental data for infinitely dilute CsBr aqueous
solutions are interpreted via the same formalism and compared with their analogous integral
equation calculations. Finally, some relevant theoretical implications regarding the modelling
of high-temperature aqueous electrolyte solutions are discussed and illustrated by integral equation
results.

1. Introduction

The theoretical treatment of the solvation phenomenon for simple ions in aqueous solutions
has been rather difficult, despite the apparent simplicity of the system. Long-range solvent-
screened electrostatic interactions, coupled to the large variation (with state conditions) of the
dielectric permittivity of water, give rise to a gamut of rather complex solvation phenomena
including dielectric saturation, electrostriction and ion association [1]. Notably, ion solvation
in high-temperature/pressure aqueous solutions plays a leading role in hydrothermal chemistry,
such as in the natural formation of ore deposits [2], scaling and corrosion in boilers and reactors
[3, 4] and in high-temperature microbiology [5, 6].

Tremendous effort has been expended investigating hydrothermal solutions to determine
their thermodynamic, transport and spectroscopic properties with the goal of elucidating the
solute–solvent and solute–solute interactions over a wide range of state conditions [7, 8]. It
is precisely at these conditions where our understanding and predictive capabilities are most
precarious, in part as a result of the coexistence of processes with two rather different length
scales, i.e. short-ranged (solvation) and long-ranged (compressibility-driven) phenomena [9].
The latter makes hydrothermal systems extremely challenging to model, unless we are able to
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isolate the (compressibility-driven) propagation of the density perturbation from the (solvation-
related) finite-density perturbation phenomena [10].

In this paper, first we briefly review the solvation formalism for high-temperature
electrolyte solutions recently proposed to tackle such problems [11], then illustrate the
formalism by interpreting some recent experimental results for infinitely dilute CsBr aqueous
solutions [12]. Finally, we interpret the molecular basis for the success of the underlying ideas
behind the recently proposed regression approach for the solute partial molar volumes [12, 13]
and discuss some issues regarding the modelling of these systems.

2. High-temperature solvation process

The solvation formalism hinges upon the discrimination of disparate length-scale phenomena,
i.e. between solvation and compressibility-driven phenomena [9, 10]. This is achieved by
splitting the species total correlation functions into their direct and indirect contributions
according to the Ornstein–Zernike (OZ) equation [11]. Thus, the solvation of a single ionic
solute (salt) Cν+ Aν− in a pure solvent at constant state conditions (constant T and either constant
P or ρ) can be described by a thought experiment (see figure 1 of Chialvo et al [11]), on a
system initially considered as a pure solvent in which ν solvent molecules (ν = ν+ + ν− where
ν+ and ν− are the stoichiometric coefficients of the salt) are distinguishable by their solute
labels. As such, this system constitutes an ideal solution in the sense of the Lewis–Randall
rule [14, 15]. Then, the solvation process proceeds by the mutation of the distinguishable ν
solvent molecules into the final neutral ionic solute Cν+ Aν− (e.g. through a Kirkwood coupling-
parameter charging) to form the infinitely dilute non-ideal solution. This process, in which the
original ν solute species in the ideal solution (where solute–solvent interactions are identical
to solute–solute and solvent–solvent interactions) are converted into the neutral ionic solute,
is driven by the difference of free energy (µr∞U (T , P )− νµr0V (T , P )), where subscripts U and
V denote solute and solvent, respectively.

The main goal of this formalism is to connect the microscopic changes of the solvent
structure around the mutating species with the macroscopic (thermodynamic) properties which
best characterize the solvation process. As we discussed elsewhere [16] this connection can be
achieved in essentially four equivalent ways by interpreting the driving force of the solvation
process, from either a microscopic or a macroscopic perspective. For the sake of clarity, we
first take the neutral ionic solute as a hypothetical ‘molecular’ entity in order to derive the
solute properties which are usually measured experimentally. Then, we go a step further by
deriving the corresponding individual-ion contributions to the neutral ionic solute properties,
making contact with the actual solvent environment around the individual ions.

To do so, we start from the exact thermodynamic expression,

µr∞U (T , P )− νµr0V (T , P ) =
∫ ρ(P )

0
(v̄∞
U − νv̄0

V )
dρ

κρ
(1)

which we can re-write in terms of the rate of change of pressure (at constant temperature and
solvent density) caused by the structural perturbation of the solvent around the solute, i.e.
(∂P/∂xU)

∞
T ,ρ [11],

µr∞U (T , P )− νµr0V (T , P ) =
∫ ρ(P )

0

(
∂P

∂xU

)∞

T ,ρ

dρ

ρ2
. (2)

Here the superscript r denotes a residual quantity for a pure (0) or an infinitely dilute (∞)
species at the indicated state conditions, respectively; T is the absolute temperature; P is the
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total pressure; v̄0
V = v0

V is the partial molar volume of the pure solvent such that ρ = 1/v̄0
V is

its molar density counterpart and κ is the solvent isothermal compressibility.
Equation (2) highlights the finiteness of its integrand at any state condition, and allows

us to make contact with the microstructure of the system [10], i.e. (see appendix B of Chialvo
et al [11]), (

∂P

∂xU

)∞

T ,ρ

= νρkT (C0
VV − C∞

UV ) (3)

where C0
VV and C∞

UV are the direct correlation function integrals (DCFIs) for the solvent–
solvent and solute–solvent interactions (i.e. the descriptors of the solution microstructure
[17, 18]), and k is the Boltzmann constant.

An alternative way of looking at the solvation driving force is through the excess particle
number [16],

N∞
U,ex = 4πρ

∫ ∞

0
[g∞
UV (r)− g0

VV (r)]r
2 dr (4)

i.e. the number of solvent molecules around the solute in excess of that around any solvent
molecule (the Lewis–Randall ideal solution). Because N∞

U,ex = −κ(∂P/∂xU)∞T ,ρ [10],
its solvation contribution N∞

U,ex (SR) becomes equal to N∞
U,ex(SR) = (κIG/κ)N∞

U,ex , and
consequently, (

∂P

∂xU

)∞

T ,ρ

= −N
∞
U,ex(SR)

κIG
(5)

where κIG = (ρkT )−1 is the isothermal compressibility of the ideal gas at the state conditions
of the solvent, and SR denotes the short-range contribution (associated with the local solvent
density perturbation) to the corresponding diverging N∞

U,ex . This equation highlights the
connection between the pressure change (at constant T and ρ) associated with the perturbation
of the solvent structure around the solute and the corresponding effective change in the number
of solvent molecules. Note that, since this quantity does not involve explicitly any size for the
solvation shell,N∞

U,ex(SR) can be considered as a effective solvation number (see Chialvo et al
[11]), though it should not be confused with the conventional definition of hydration/solvation
numbers based on the structural information of the first hydration shell.

Analogously, the pressure derivative (∂P/∂xU)∞T ,ρ can be re-written in volumetric terms
as [11], (

∂P

∂xU

)∞

T ,ρ

= kTρ2(v̄∞
U (SR)− νv̄0

V ). (6)

Therefore, the difference of chemical potentials in equation (1) can be interpreted
macroscopically not only in terms of the finite pressure perturbation (∂P/∂xU)∞T ,ρ as in
equation (2), but also in terms of either the finite volumetric perturbation (v̄∞

U (SR)− νv̄0
V ), or

the effective solvation number N∞
U,ex(SR) as follows,

µr∞U (T , P )− νµr0V (T , P ) = kT
∫ ρ(P )

0
(v̄∞
U (SR)− νv̄0

V ) dρ (7)

and

µr∞U (T , P )− νµr0V (T , P ) = −kT
∫ ρ(P )

0
N∞
U,ex(SR)

dρ

ρ
. (8)

Even though we have introduced the properties of the neutral ionic solute in the above
analysis—i.e. the properties measurable by experiment—its properties at infinite dilution are
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actually linear combinations of the corresponding single-ion counterparts. In fact, the solvation
process involves the perturbation of the solvent structure around the individual ions (rather than
the neutral ionic solute), and, therefore, we need to connect the solvent structure around each
ion with properties of the hypothetical salt species. For example, the partial molar volume of
the salt Cν+ Aν− at infinite dilution becomes,

v̄∞
U = ν−v̄∞

− + ν+v̄
∞
+ (9)

where v̄∞
i is the partial molar volume of the ion i at infinite dilution. Consequently [11],(

∂P

∂xU

)∞

T ,ρ

= ν+

(
∂P

∂x+

)∞

T ,ρ

+ ν−

(
∂P

∂x−

)∞

T ,ρ

(10)

indicating that the experimentally determined Krichevskii parameter for electrolyte solutions
[18, 19] is actually a linear combination of those corresponding to the individual ions
constituting the salt, i.e.(

∂P

∂xi

)∞

T ,ρ

= kTρ(C0
VV − C∞

iV − T∞
iV ) i = +,− (11)

or its equivalent forms [20],(
∂P

∂xi

)∞

T ,ρ

= kTρ2(v̄∞
i (SR)− v̄0

V ) i = +,− (12)

and, (
∂P

∂xi

)∞

T ,ρ

= −N
∞
i,ex(SR)

κIG
i = +,− (13)

where v̄∞
i (SR) and N∞

i,ex(SR) are the individual-ion counterparts of v̄∞
U (SR) and N∞

U,ex(SR)
[20], respectively, and T∞

iV is a solvent property [21],

T∞
iV = −4πρqi(ε − 1)

3εµ

∫ ∞

0
r3c101

00:VV (r) dr. (14)

ε is the solvent dielectric constant, qi is the ion charge, µ is the solvent’s dipole moment
and c101

00;VV (r) is the r-dependent (101) coefficient of the rotational invariant expansion of the
solvent–solvent direct correlation function [22]. Note that, because of the electroneutrality
condition, ν+T

∞
+V = −ν−T∞

−V , and, consequently, T∞
iV does not contribute to v̄∞

U (equation (9)).
Equations (9)–(13) indicate that we can now define the solvation thermodynamics of the

individual ions constituting the neutral ionic solute, in terms of the corresponding ion-induced
effects, i.e.

µr∞i (T , P )− µr0V (T , P ) =
∫ ρ(P )

0

(
∂P

∂xi

)∞

T ,ρ

dρ

ρ2
= kT

∫ ρ(P )

0

(
C0
VV − C∞

iV − T∞
iV

) dρ

ρ

= kT
∫ ρ(P )

0

(
v̄∞
i (SR)− v̄0

V

)
dρ

= − kT
∫ ρ(P )

0

N∞
i,ex(SR)

ρ
dρ = kT ln[φ̂∞

i /φ̂
0
V ] i = −,+ (15)

such that,

µr∞U (T , P )− νµr0V (T , P ) = νkT ln(φ̂∞
U /φ̂

0
V ) (16)

with (φ̂∞
U )

ν = (φ̂∞
+ )

ν+(φ̂∞
− )

ν− . The corresponding entropy and enthalpy expressions for the
individual ions have been derived elsewhere [11].
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In summary, in the preceding analysis we have given equivalent ways to express the finite
change of free energy in the solvation process that takes place when ν solvent molecules
are mutated into ν+ cations and ν− anions in solution. The resulting solvation quantities
exhibit well behaved state dependencies; the solvation enthalpic and entropic contributions
are discussed in detail elsewhere [9, 11]. Yet, their temperature and pressure derivatives
will diverge at the solvent criticality [19], a behaviour that implies an exact cancellation
between the corresponding divergent portions of the enthalpic and entropic contributions to
(µr∞U (T , P )− νµr0V (T , P )). Furthermore, we have shown elsewhere [9, 11] that the diverging
contributions to the partial molar enthalpy and entropy of the solute at infinite dilution are not
associated with the solvation process, which is a local density perturbation. In fact, we have
shown that they are associated with the propagation of the perturbation across the system; that
is, they are characterized by the correlation length of the solvent. This feature suggests that
the first step toward a successful modelling of high-temperature electrolyte solutions should
involve the discrimination between the two contributions—i.e. solvation from compressibility-
driven phenomena—to avoid working with implicity diverging quantities.

3. Integral equation calculations and interpretation of experimental results

As part of a wider investigation, we present here a few results for CsBr in an infinitely
dilute aqueous-type solution, along three supercritical isotherms (643, 673 and 703 K), in
the density range 0.0136 � ρ g cm−3) � 0.81. A complete analysis for alkali halides is
presented elsewhere [20]. In the present calculations the systems are defined as charged
hard sphere ions immersed in a model aqueous-like solvent, described as a hard sphere with
an embedded point polarizability and permanent electrostatic multipole moments including
quadrupole and ocupoles as given in table 1. The calculations were carried out by solving
the reference hypernetted-chain (RHNC) equations with solvent polarization effects treated
at the self-consistent mean-field (SCMF) level as described elsewhere [23, 24]. Details on
these calculations for systems at normal conditions were presented earlier [21, 25], and some
others for high temperature solutions are given elsewhere [20]. In addition, and in contrast to
the normal unit charges, the ions bear only 66% of the full charge. The reduced charges were
necessary to avoid the collapse of solvent molecules on bare ions thus ensuring the convergence
of the integral equation calculations over the entire solvent density range considered†.

In order to make contact between model predictions and experimental results, we use
the above formalism to interpret the solvation behaviour of simple salts in high-temperature
aqueous solutions, according to our own integral equation calculations, and the recent
experimental data from Wood and co-workers [12, 13]. More specifically we are most
interested in studying the quantity D∞

UV = (κIG/κ)v̄∞
U and its T –ρ dependence from a

molecular viewpoint, where κ and v̄∞
U are the isothermal compressibility of the solvent and the

partial molar volume of the ionic solute (salt) at infinite dilution, and the superscript IG denotes
the ideal gas behaviour. This quantity, which was recently targeted for regression purposes by
some experimentalists [12, 26] exhibits an intriguingly weak temperature dependence in the
range 550 < T (K) < 725. This condition allows a rather simple and well behaved density
correlation to predict (in principle) v̄∞

U at any other supercritical state condition [13], based
solely on the thermodynamic properties of the solvent (water).

In figure 1 we show the solvent density dependence of D∞
UV along three supercritical

isotherms for infinitely dilute CsBr aqueous-like solutions as predicted by the integral equation

† The RHNC integral equation theory appears to predict a shifting upwards of the phase coexistence envelope due
to the perturbing effects of bare unscreened ionic charges. These effects can be reduced by increasing the size of the
ions or by decreasing the ionic charge.
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Table 1. Molecular properties of the water-like solvent (ν) and the ions (Cs+, Br−).

Property Value

dν 2.8 Å
d− 3.248 Å
d+ 3.248 Å
µ 1.85 × 10−18 esu cm
αxx 1.501 Å3

αyy 1.390 Å3

αzz 1.442 Å3

Qxx 2.63 × 10−26 esu cm2

Qyy −2.50 × 10−26 esu cm2

Qzz −0.13 × 10−26 esu cm2

&xxz 2.30 × 10−34 esu cm3

&yyz −0.96 × 10−34 esu cm3

&zzz −1.34 × 10−34 esu cm3

Figure 1. Behaviour of D∞
UV = (κIG/κ)v̄∞

U for an infinitely dilute CsBr aqueous solution as a
function of the solvent density along three supercritical isotherms in comparison with experimental
data [12]. The arrow indicates the estimated critical density of the model solvent.

calculations. Note that, according to the predicted relation betweenP and ρ along the isotherm
T = 643 K, the critical point of this water-like solvent is Tc ≈ 643 K and ρc ≈ 0.20 g cm−3

[20], i.e. the three isotherms considered here are supercritical. We also compare these results
with the corresponding experimental data of Sedlbauer et al [12], which were determined
from measurements of solute partial molar volumes at infinite dilution within the temperature
and density ranges 604 < T (K) < 717 and 0.26 < ρ(g cm−3) < 0.60, respectively. The
outstanding feature of the predicted values of D∞

UV is their lack of temperature dependence
for supercritical densities, an appealing behaviour that prompts some relevant questions
regarding the underlying microscopic mechanism. Incidentally, this is the same behaviour
as observed previously for several types of high-temperature electrolyte and non-electrolyte
aqueous solutions [12, 13, 26].

In contrast to the experimental approach, the integral equation calculations on well
defined models provide all the structural information associated with the resulting macroscopic
behaviour, and, consequently, allow us to interpret and to offer an explanation for the observed
behaviour. For example, the weak temperature dependence exhibited by D∞

UV [10, 11] can be
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Figure 2. Behaviour of N∞
U,ex (SR) and (C∞

UV − C0
VV )/ρ for an infinitely dilute CsBr aqueous

solution as a function of the solvent density along three supercritical isotherms in comparison with
experimental data [12]. The vertical arrow indicates the estimated critical density of the model
solvent.

interpreted in terms ofN∞
U,ex(SR) (see figure 2), a quantity that also displays a clearly negligible

temperature dependence for supercritical densities. A similar behaviour can be observed for
its associated quantity (C∞

UV −C0
VV )/ρ (see equations (3) an (5)), which is another measure of

the relative structural changes undergone by the solvent around the solute. By the same token,
figure 2 suggests that the observed temperature dependence of D∞

UV for subcritical densities
(figure 1) arises from that of the N∞

U,ex(SR) counterpart (figure 2). This stronger temperature
dependence at ρ < ρc is not unexpected, since at low solvent densities where a second virial
coefficient suffices to describe the P–ρ–T system behaviour, we have that,

N∞
U,ex(SR) ≈ 2νρ3(kT )2(BUV (T )− BVV (T )) + · · · (17)

where Bij (T ) are the second virial coefficients for the ij -pair. Thus, N∞
U,ex(SR) and its related

properties will exhibit a rather strong dependence on temperature (explicitly quadratic) and
density (explicitly cubic).

Yet another way to interpret the previously mentioned weak temperature dependence is
through the analysis of the two contributions to the solute partial molar volume v̄∞

U , i.e. the
solvation v̄∞

U (SR), and the compressibility-driven v̄∞
U (LR) contributions, respectively. From

figure 3 it is clear that the solvation portion v̄∞
U (SR) (as opposed to the compressibility-driven

portion v̄∞
U (LR)) exhibits the negligible temperature dependence found in the associated

quantities (figures 1 and 2), and highlights once again the appeal of well defined solvation
quantities as the target for regression purposes.

4. Discussion and conclusions

We have described the solvation process in high-temperature electrolyte solutions based on
thermodynamic and statistical mechanical views, through the discrimination between the
true solvation phenomena and the largely unrelated accompanying compressibility-driven
phenomena. These solvation-related properties (designated as ‘SR’ contributions) have
unambiguous microscopic meaning, in addition to their macroscopic interpretation in terms
of the isothermal compressibility of the pure solvent κ and the infinite-dilution partial molar
properties [11]. For the case under consideration,

v̄∞
U (SR) = (κIG/κ)(v̄∞

U − νv0
V ) + νv0

V (18)
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Figure 3. Behaviour of v̄∞
U (SR) and v̄∞

U (LR) ≡ v̄∞
U −v̄∞

U (SR) for an infinitely dilute CsBr aqueous
solution as a function of the solvent density along three supercritical isotherms in comparison with
experimental data [12]. The vertical arrow indicates the estimated critical density of the model
solvent. The three lines joining the experimental data correspond approximately to the isotherms
of 669, 686 and 709 K from bottom to top, respectively.

and, consequently,

N∞
U,ex(SR) = (1 − ν) + (κIG/κ)(ν − (v̄∞

U /v
0
v)). (19)

A few points are worth mentioning here. First, the excess number N∞
U,ex(SR) and its

ion counterparts should not be associated with or confused with the traditional coordination
number, described as the geometric arrangement of solvent molecules around a central species.
Therefore, N∞

U,ex(SR) and its ion counterparts cannot be associated with the conventional
solvation/hydration numbers obtained through NMR, EXAFS, neutron or x-ray diffraction
measurements [27, 28]. In fact, N∞

U,ex(SR) accounts for the solvent molecules directly
correlated with the central species in excess over that in which the central molecule is
also a solvent (the ideal solution in the Lewis–Randall sense). Second, while N∞

U,ex(SR)
involves unambiguous connections with all solvation properties, the more familiar concept of
solvation/hydration numbers does not [11].

According to this formalism, the salt partial molar properties can be defined in terms of their
individual ion counterparts, i.e. in terms of the relative structuring of the solvent environment
around individual species. Consequently, the solvation properties of the individual ions can
unambiguously be connected to the solvent’s electrostriction around the species in solution
as well as to the coefficients of the Helmholtz free energy expansion for dilute mixtures,
as described elsewhere [11]. Considering that one of the primary goals of our molecular-
based studies is the development of successful engineering correlations, the proposed solvation
formalism becomes a powerful tool for interpreting experimental data and for choosing the
best combination of properties for regression purposes.
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